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Abstract. In this paper it is shown that a large class of smooth mathematical programming problems
can be converted into the standard forms to which the GOP algorithm applies.
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Global optimization of nonconvex programming problems has been an important
topic in optimization theory and has generated significant interest in recent years.
A new primal-relaxed dual method, called the GOP algorithm, is reported to be
efficient for bilinear programming problems, polynomial programming problems
and rational polynomial programming problems (see, for example, Floudas and
Visweswaran, 1990, 1993; and Visweswaran and Floudas, 1992, 1993). The
method, however, can be applied only after the problem has been reformulated in
the following standard form:

min f(x, y) (GOP)

subject to  g(x, y)<0, hix,y)=c;, x€X, y€Y

with 1=<i=<k, i<j=<p,

where X and Y are non-empty compact convex sets in R" X R™ (n,m=1),
fC¢, ), (., ), flx, ) and g,(x, -) are differentiable convex functions for any fixed
YyEY or x€X, and Ah(x, y) is bilinear. Hence this method was not considered
applicable to a very broad class of mathematical problems. In this paper we show
that a large class of smooth mathematical programming problems can actually be
reformulated in this form by a simple transformation of variables.

Let X be a non-empty compact convex set in R". Let F(x) and G,(x)
(1 =i=<L) be continuous functions on X. For sake of simplicity we will assume
that F G, € C*(R"). We now consider the following optimization problem:
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min F(x) , subject G(x)<Oandx€ X withl<i<L. (GMP)

It is clear that (GMP) represents a large class of mathematical programming
problems. -Before giving our result we mention a simple fact in perturbation
theory:

LEMMA 1. Let A(x) be a continuous symmetric n X n matrix on X. Then there
exists ay>0 such that B(x) = al + A(x) is a positive definite matrix on X for
a = «y, where I is the n X n unit matrix.

Proof. Note that B(x)/a =1+ A(x)/e and that ||A(x)/al]|,*—0 as a—> .
Therefore the determinant and all sub-determinants of B(x)/a will converge to
the corresponding those of I as @~ . Thus there is ¢, >0 such that B(x)/a is
positive definite for @ =, and so is B(x). O

THEOREM 1. Let X, F and G; (1< i< L) satisfy the conditions in (GMP). Then
there are functions f, g, (1<i<L)and h; (1<j<n) in C? (X X X), satisfying the
conditions in (GOP) such that the (GMP) can be equivalently reformulated in the
following standard form:

min f(x, y)
X,y

subject to  g,(x, y)<0, h(x,y)=0, x€X and y€EX,

with 1<i<L, 1=sj=<n.

Proof. Select first an @ >0 from Lemma 1 such that el + H(F)(x) and ol +
H(G,)(x) are positive definite matrices on X, where H(F) and H(G;) are the
Hessian matrices of the functions F and G; on X. Now let f(x, y)= F(x) +
axx” ~ axy’, gx,y)=G,(x)+ axx” —axy’ for 1<i<L and hix, y)=x,—y;
for 1=<j=<n. It follows that f, g, and h, satisfy the conditions in (GOP) as for a
fixed y the Hessian matrix of f or g, (1<i=<L) is positive definite on X.
Moreover it is clear that the problem (GMP) can be equivalently rewritten as

min flx, y)

subject to  g,(x, y)<0, hfx,y)=0, x€X and y€EX
with 1=sis<L, 1<j=<L,
This is the conclusion of the theorem. O
It is important to choose « in the numerical computation. This can be solved by

noting that the matrices H(F) and H(G,) (1 <i=<UL) (the Hessian Matrices of F
and G,) can be decomposed as QDQ" and Q,D,Q;, where D and D, are the
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diagonal matrices whose diagonal elements are the eigenvalues of H(F) and
H(G,), and QQ" = Q0,07 =1. 1t follows from this fact that & can be chosen as

a = —min {0, A(®), L, ®), - - -, A, ()},

where A(x) and A,(x) are the minimum eigenvalues of H(F) and H(G,) at x.

A special instance where this theoretical result was applied and & was explicitly
obtained is the case of rational polynomials that arise in the structure de-
termination of clusters of atoms and molecules (see Maranas and Floudas, 1992).

Note also that a number of related penalty type transformations that reduce
combinatorial problems, bilinear programming, and linear complementarity
problems to other forms are reported in chapter 3 of Pardalos and Rosen (1987).

From this result it is clear that the GOP method is actually applicable to very
broad mathematical programming problems. All useful finite dimensional prob-
lems in practice are virtually covered.
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